
Table of Contents
1. Introduction 3

2. Background 5
2.1. Introduction to literature review 5
2.2. Content 5

2.2.1. Landmark Detection Models 5
2.2.2. Blur Detection on Images 5
2.2.3. Efficient Frame Extraction 6

2.3. Summary 6

3. Methodology 7
3.1. Application 7

3.1.1. User Interface Design 7
3.1.2. Opening A Video File 7
3.1.3. Viewing the Video in the App 7
3.1.4. Downloading a Video From Youtube 8
3.1.5. Uploading Video to Server 8
3.1.6. Clickable Landmarks in the List View 9

3.2. Server 10
3.3. Video and Image Preprocessing 11

3.3.1. Frame Extraction 11
3.3.2. Blur Detection 12

3.4. Model 13
3.4.1. Data sets used 13
3.4.2. Image Augmentation 13

3.5. Model Training 14
3.5.1. Base Model 14
3.5.2. Transfer Learning 14

4. Project Management 15
4.1. How was the project conceived and managed 15
4.2. Project Management Approach 16
4.3. Project resources, execution and planning 18

4.3.1. Project Schedule 18
4.3.2. Project Resources 19

4.4. Risk management 22
4.5 Limitations encountered during project management 23

4.5.1 Time Management 23
4.5.2 Versioning 23
4.5.3 Communication 23

5. Outcomes 24

1



5.1. Results achieved/product delivered 24
5.1.1. Accuracy of Model 24

5.1.2. Filtering of Frames 24
5.1.2.1. Frame Extraction from Videos 24
5.1.2.2. Blur Detection on Extracted Frames 24

5.1.3. Integration 25
5.2. How are initial requirements met 26
5.3. Justification of decisions made 27

5.3.1. Running the model on device vs on a server 27
5.3.2 Learning rate and optimizer of model 28
5.3.3 Number of Epochs and Batch Sizes 28

5.4. Limitations of project outcomes 29
5.4.1. Lack of User Friendly Functions 29
5.4.2. Limited Number of Landmarks 29
5.4.3. Network Connection Speed 29
5.4.4. Lack of Youtube Integration 29
5.4.5. Compatibility 30

5.5. Improvements and possible future works 31

6. Conclusion 32

7. References 33

8. Appendix 34

2



1. Introduction

Video blogs, or as most people would call it, vlogs are content that would be found in

a blog, which is traditionally text and images in video form. Generally, these videos are made

by content creators to document or showcase activities in their daily lives of some special

occasion. It is a huge contributor to traffic on video streaming sites like Youtube as they are

the third most viewed type of video (Brown 2018). The scope of our project would be on a

subset of vlogs called travel vlogs, where content creators upload videos about their travel

experiences. These types of videos are apparently a huge influence towards people’s

decisions when travelling as 64% of people watch them when planning for a trip (Henderson

2018). Especially in recent years, Youtube statistics show that views for these types of

videos increased by 41% between 2017 and 2018 (Travel video view statistics - Think with

Google, 2018).

Most travel vlogs are long in length, most vlogs are about 20 minutes long.

Therefore, as a viewer, most of the time we are only interested in a few specific landmarks or

would like to skip over some sections of the video containing certain landmarks. A method

that enables the viewer to do this is to add the landmark names along with the

corresponding timestamps of which the landmarks appear in the video. This allows the user

to directly seek to the position of the video where the landmark appears. However, as a

Youtuber, as there is no automated process to do this, this has to be done manually. The

Youtuber would have to watch the video and note down the timestamps individually which is

an extremely time consuming video and is infeasible for a Youtuber who uploads videos

frequently.

Those problems were the main motivation towards this project. Our aim and goal to

achieve in this project is to solve the problems at both ends, the viewer and the Youtuber.

For the Youtuber, we aimed to create a solution that will allow them to automatically generate

accurate descriptions of the landmarks and timestamps in a reasonable amount of time. For

the viewer, we aimed to allow them to detect landmarks from Youtube videos that are

already online.

While searching on research papers that have done landmark detection, we noticed

that all of the papers were doing landmark detection on images. We thought that it would be

a breakthrough to implement a mobile application that can detect landmarks in videos

instead. If successful, it would be a new contribution towards the field of landmark detection

3



on media. In essence, a video is a series of continuous images, thus, the fundamentals to

traditional landmark detection approaches can still be used. However, we will be required to

preprocess the video before passing it into the model as input, which would be the major

part of our contribution.

In semester 2, we successfully created an Android app that achieves the main

objective. The Android app allows the user to input a Youtube link and when the processing

in completed, a list of clickable landmarks would be presented, allowing the user to click to

directly seek to that timestamp in the video. The app also allows Youtubers to upload a local

video file, which will be processed and a list of landmarks will be displayed as a long string of

text. From there, the Youtuber can edit the description before uploading the video to

Youtube.

4



2. Background

2.1. Introduction to literature review

For this literature review, due to lack of papers specific to our work, we would be looking at

papers that are similar. Mainly, most papers that are published on the topic can identify

landmarks in images, which is different from our goal that is to be able to identify landmarks

in videos. However, in the low level breakdown of how our algorithm would work, we are

fundamentally still attempting to detect landmarks in images. We would also be looking into

papers related to other core functions in our project such as image augmentation, feature

extraction and filtering frames.

The aim of this literature review is to be able to have a better understanding of

existing works and approaches to this similar problem. By critically evaluating and analysing

past works, we also aim to identify some shortcomings and hopefully be able to find a

method to overcome it in our project to improve the overall performance.

2.2. Content

2.2.1. Landmark Detection Models

We have noticed that there are 3 main models that we can use as base models to use

transfer learning in order to enable them to detect landmarks, namely the VGG-16 network,

ResNet and Xception. We found that there has been contradictory research in the past

showing that depending on the dataset used each of the networks perform differently.

However A. Nygaard in (Adil Nygaard, 2018) tests the three networks on the google

landmark dataset and observers that VGG-16 performs the best achieving a test accuracy of

99% whereas its ResNet50 and Xception obtain 98% and 90% respectively. As we too are

using the same dataset we shall use the VGG-16 model as, even though it performs worse

on general image classification has been shown to perform superior in landmark detection

by F. Chollet in  (Chollet, 2017) and He et al mentions in (Kaiming He, 2016).

2.2.2. Blur Detection on Images

Laplacian operator and OpenCV

As our project requires us to have lesser images being passed to the test model, we need to

have an efficient method to filter the extracted frames in terms of the amount of blur. This

approach has been researched by R Bansal(2016), G Raj (2016) and T Choudhury (2016),

where they are using Laplacian operator and OpenCV library. The Laplacian operator is

being implemented from the OpenCV to perform calculate the amount of blur in the images.

5



The variance of the Laplacian kernel is calculated to determine the amount of edge-like

features in the images. We will assume that a blur image will have very little edges in the

image, thus if the variance falls below a pre-defined threshold, the image is considered as

blurry. The method is simple to implement and scalable as the threshold value can be

adjusted according to needs.

2.2.3. Efficient Frame Extraction

PySceneDetect

Instead of filtering the images based on a fixed intervals, we thought of another way which

we can get the frames whenever a change of scene is detected. Scene Detection can be

explained as splitting a video into sub-clips based on scene transitions. Some of the travel

vlogs might contain scene transitions which are editing effects that are usually done with

hard cuts, fades, and dissolves. There is an existing library in Python which automatically

detects scene changes in videos. One of the detection types, which is content-based scene

detection, is exactly what we require to do to our videos. According to the research paper

that is done by DECKER, C. (2016), the content-based option checks for the differentiation

between pairs of frames, which the value is being calculated by using heu, saturation and

lightness (HSV) color space difference. The computed value is used to determine whether

the difference exceeds a predefined threshold value.

2.3. Summary

In conclusion, having analysed several approaches for landmark detection in images, we

have decided to use the modern approaches, specifically the VGG-16 model with transfer

learning as we found that it consistently obtains the highest accuracy in such tasks.

However, we will try to combine techniques in different approaches to attempt to improve the

accuracy and performance further. In order to filter blur images, as it is not the main focus of

our project, we will be using the Laplacian operator and OpenCV mainly due to its simplicity.

Similar images would be detected using perceptual hash and usage of image key points due

to its performance.

6



3. Methodology

3.1. Application

3.1.1. User Interface Design

The final application has 3 different activities, each representing a different part of the

application. Google’s Material Design guidelines were incorporated into the application to

improve the aesthetic as well as the overall look and feel. Elements such as the rounded

corners, the Roboto font style, material design text boxes and more. The constraint layout

was chosen for all 3 activities mainly due to its simplicity in creating layouts in flat view

hierarchy. Besides, guidelines were used widely in all views as well to ensure that the

interface can be displayed on other devices with varying screen sizes and resolutions

without issue.

3.1.2. Opening A Video File

In the upload to Youtube interface, a button is present in the top left corner of which when

clicked, will allow the user to choose a file. To accomplish this, the button starts a new built in

intent that starts an activity to allow the user to pick a video file from local storage. When the

video is picked, the URI, which is the unique resource identifier that identifies the video file

(which is returned by the intent) will be converted into an Android native file path (example:

“/storage/emulated/0/Download/”). This conversion is done by using the query function in the

content resolver, which returns a cursor that points to the path of the file. The path can then

be used to play the video in the Video View as well as upload it to the server.

3.1.3. Viewing the Video in the App

For a video that resides in the local storage, to play it, the URI of the video file is passed into

the setVideoURI function in the Video View of the interface. The media controls (play and

pause) are enabled by creating an instance of MediaController and using the

setMediaController function to set the MediaController to the Video View.

For a video on Youtube, the YouTube Android Player API was used to accomplish this.

Firstly, the app is registered on the Google Developer Console to allow use to get an API key

which was necessary for the API to function. Another prerequisite was that the activity that

encompases the Youtube Player must extend the YoutubeBaseActivity class. From here,

using the initialize function and passing in the API key and an instance of

YouTubePlayer.OnInitializedListener() (which allowed the Youtube player to execute certain

7



commands once the initialisation is successful). When the “confirm” button is clicked,

signaling that the user has entered a link, the id of the video, which is the random characters

after the “=” symbol of the URL is obtained from the edit text by using a function. It is then

sliced and passed into the cueVideo function of the YouTubePlayer, starting the video.

3.1.4. Downloading a Video From Youtube

In order to download a video straight from Youtube, a specific download link (different from

the link of the video) must be extracted from the page. To achieve this, we used a library

called YouTubeExtractor. This function takes the link of a youtube video and parses the

webpage to return a download link. To specify the resolution, the library allows us to specify

the itag value, which is a Youtube video stream format code that is unique to each resolution

and file type, detailed in this link:

https://gist.github.com/sidneys/7095afe4da4ae58694d128b1034e01e2

As only the video is required to be processed, the function checks available itags and picks

the itag with the lowest resolution without audio. A low resolution video is used to reduce the

time taken to upload the video to Youtube.

Next, using the link, Android’s built in Download Manager is used to download the video.

Using the Download Manager avoids the need to handle issues with the download such as

loss of network connection, pausing and resuming the download, failed connection and

more.

3.1.5. Uploading Video to Server

For this purpose, the OkHttpClient library is used. A client is first initialised. Then, the

Content Resolver is once again used to access the actual video file, of which its location

resides in the Downloads folder if detecting from an existing Youtube Video and in the path

specified by the user for local videos). An HTTP request body is created which contains:

(1) The size / length of the file

(2) The type of file, which in this case is fixed to mp4

(3) The actual file

The request body is split into multiple parts for transmission using the MultipartBody.Builder()

function. Finally, an HTTP request is created, of which the previously created request body is

attached and sent to the server. When a response is received (the server responds with the

list of landmarks and timestamps when the processing is completed), the landmarks and

8

https://gist.github.com/sidneys/7095afe4da4ae58694d128b1034e01e2


timestamps are then parsed to either be displayed as text in the upload to Youtube section or

a list of landmarks in the existing Youtube video section.

3.1.6. Clickable Landmarks in the List View

To implement the functionality where each item in the list is clickable, a list view with array

adapter is used. When the response (which is the landmarks and timestamps sent from the

server) is received, it is parsed into 2 Array Lists, which is a suitable data type as it’s size is

dynamic:

(1) landmarks_list - an Array List of strings where each index contains the timestamp (in

hours, minutes and seconds) and the name of the landmark as a single string.

(2) timestamps - an Array List of integers containing the timestamps in milliseconds of

where each of the landmarks appear in the video.

The indexes in both Array Lists match, meaning an index in the landmarks_list would

correspond to the same landmark as the same index in the timestamps list. Using the

setOnItemClickListener method in the ListView, each time an item is clicked in the list view,

the position of the item clicked would be used as the index to obtain the timestamp in

milliseconds of where the landmark exists in the video. From there, the Youtube Player’s

seekToMillis function is called and the time is passed in, making the Youtube video seek

directly to that position.

9



3.2. Server

The server is implemented using a Python Framework called Flask. This was chosen as

most of the codes written for this project where in the Python language, making the

integration process slightly easier. In the code for the server, the function handle_request will

be called whenever there is an incoming request to the server. In this function,

flask.request.files is used to get the incoming file (which is the video that is being uploaded).

Werkzeug.utils.secure_filename is used to obtain the correct file name for the video. The

video file is then saved to the current directory. Finally, the main() function, which contains all

the codes to process the video (explained the sections below) is called and the result of the

function is returned as the response.

10



3.3. Video and Image Preprocessing

3.3.1. Frame Extraction

Initially, our proposed plan was to use the traditional method to extract frames based on a

fixed interval, which can be set by us according to the videos. The mentioned method can be

done in Python by importing the OpenCV libraries, where the specific function that we are

using is cv2.VideoCapture(). The path to the video file needs to be specified as the

parameters of the VideoCapture function to create a video object. The video object is then

being used to read the videos and write the frames being read from the videos into images

by using cv2.imwrite().

However, throughout the semester, we have found a better method to extract frames from

the videos, which is another Python library called PySceneDetect. It is also a command-line

application which is able to split the video into separate clips automatically. The way

PySceneDetect executes is to detect whenever there is any scene changes, then extract the

frames based on the changed scenes. There are two modes available in PySceneDetect,

which are Content Detection and Threshold Detection.

The general command line version of PySceneDetect to extract frames from video is:

scenedetect -i <video_filename> detect-content list-scenes save-images

We have chosen Content Detection to fit this function into our project, where one of the

sub-options under save-images called --num-images N is being used to adjust the number of

frames being generated at each detected scene. As we are running our model on server, we

have to reduce the number of frames to reduce the workload on the server. We decided to

set the number of frames extracted at each scene to be 1. Thus, the final version of the

command line that we have used is shown below:

scenedetect -i <video_filename> detect-content list-scenes save-images -n 1

However due to server issues, we have modified our code to use the Python interface of

PySceneDetect instead of the command line interface. However, the functionalities and

implementations are similar as mentioned above.

11



3.3.2. Blur Detection

Blur Detection is implemented to further cut down the repeated and blurred images which

are unnecessary to be passed into our training model. It can be implemented by using

OpenCV library in Python, mainly by processing the image in the matrix form.

Similar to other image processing methods, an image is preferably to be converted into a

grayscale image which only consists of single channel if an image. The grayscale image is

then being convolved into the 3 x 3 matrix, known as Laplacian kernel. The second

derivatives of the image is then being calculated by using Laplacian operator. Laplacian is

able to emphasize the region which have high intensity changes, which in a way managed to

indicate the amount of edges contained in the image.

The variance of the Laplacian kernel is being calculated to find out the area of spread for the

responses. If the variance falls below a predefined threshold, then the image is considered

blurry because we know that a blurry image normally has less edges compared to a high

quality image.

We have to decide the threshold by ourselves depending on the images generated. In our

final product, we have used a threshold of 300, which works fine and able to detect and filter

out really blurred images. It does, however, eliminates those images taken with Depth of

Field technique because those images has relatively lesser edges. We did not regard this as

an issue because it is better to filter out the images without landmark being focussed too.

The images which are being detected as blurry will be deleted after running the script.

12



3.4. Model

3.4.1. Data sets used

The google landmark dataset with over 2 million images and 30 thousand unique landmarks

was to be used, however, since the landmarks were only given an ID instead of being

represented by their respective names, it required augmentation. There were 2 methods in

which the names of landmarks could be added:

1. Write a script to crawl the web/google images- However it was noticed that this would

cause noise leading to inaccuracy in our dataset and thus create potentially large

inaccuracies in our model.

2. Manually identify IDs with their corresponding names – This approach was used,

however, due to the amount of time required for the manual work, it was infeasible to

augment the entire dataset. Thus, we resorted to selecting the landmarks that contained

the greatest number of images in the dataset and separated them out. Using the top 50

landmarks gave us a total dataset of over 275,000 images divided into 215,000 train

images, 55,000 validation images and 2,700 test images.

3.4.2. Image Augmentation

Each image that was downloaded was used in a 96x96 dimension in order to reduce its

resolution thus making the training and more importantly the prediction using the model

much faster. When training the data images are augmented at random to create more

variance and in order to achieve this a rotation range of 90 degrees, a width range of 0.2, a

height range of 0.2 and a zoom range of 0.2 is used. This will allow for the images to be

shifted and allow for a better model.

13



3.5. Model Training

3.5.1. Base Model

The base model used was created using the VGG16 architecture trained on the ImageNet

dataset. The train data as well as the validation data is run through this base model using a

batch_size of 1000 for 5 epochs in order to convert the images into vectors using the

weights from the ImageNet on VGG16.

3.5.2. Transfer Learning

Three layers were added on top of the VGG16 model, which comprised of two dense layers

that used relu activation and a final dense layer with softmax activation. The rmsprop

optimizer was used as it provided the best results. The 3 layers were initialized with weights

by fitting the model with the train and validation data with a batch size of 1000 and run for 10

epochs.

Following this the complete model was generated by combining the base model and the top

3 layers. The first 16 layers are set to be made untrainable thereby making the weights fixed

in order to ensure the weights from ImageNet are not lost. The model is compiled using the

Adam optimizer with a learning rate of 0.0001 and decay of 0.0 as these were realized to be

the optimal values following a few tests on smaller datasets. This model is trained using a

batch size of 500 and run for 50 epochs with each epoch having 340 train steps and 150

validation steps.

3.5. Predictions

Images are retrieved one by one and are run through the model provided that they are not

blurred. By removing the blurred images, only the images with distinguishable features are

passed to the model, thereby increasing the accuracy of the model. Once the scores for

each classification are generated from the model. An argmax function is used to get the

maximum score along with its corresponding class. The score is then checked to see if it is

above 0.7. This is done in order to ensure that only the images that the model is most

confident about are detected as landmarks. Once detected, the data is sent back to the

client.

14



4. Project Management

4.1. How was the project conceived and managed

During the first meeting in semester 1, the main agenda was to discuss the topic to be done

for the Final Year Project. Prior to this, research on different fields such as steganography,

security and machine learning, were done separately by each of the team members. The

topics suggested by each member were as shown below:

1. Steganography to survive through the communication between different Social

Networking Service by Nicholas

2. Copy-move Forgery Detection on Images for Forensics by Si Qi

3. Landmark Detection on Images by Nikin

After some discussion, we decided to choose Landmark Detection as it is an interesting topic

that the rest of the teams have never tried before and we are interested in trying. In addition,

each of us have experience in the components of the project. Nikin took a Deep Learning

unit previously, which means he has the expertise to complete the major part of this project,

which is the landmark detection part which involves machine learning. On the other hand,

Nicholas and Si Qi have taken Mobile Application and some Java related coursework, thus

we are quite confident that we could build a mobile application aside with the landmark

detection algorithm.

As we proceed to discuss about details to work with Landmark Detection in Images,

Nicholas has suggested that we should do videos instead of images. It is not just because it

will be more challenging, but it comes with more meaningful objectives, which are:

1. To enable Youtubers to upload their travel vlogs with automatically generated

annotations of landmarks in a much shorter time

2. Provide an easier way for the Youtube audience to identify the landmarks in existing

Youtube travel vlogs

After further research, we did not manage to find any research papers regarding landmark

detection on videos, only landmark detection on videos existed. However, we were still keen

on going with this as we felt like it would be a challenge for us personally as well as a

contribution to this field.

15



4.2. Project Management Approach

The lifecycle model used in the actual development of the project was agile as

proposed in the proposal. The main benefit we found by using this approach was the

flexibility towards changes mid-way of the project (Gilley, 2015). During the project, there

were several changes that were made due to the challenges faced. The biggest issue was

regarding the lack of landmark names in the Google Landmarks Dataset. At that point of

time, we have already completed the analysis and design and are currently working on the

code. If the waterfall approach was used, we would need to restart the previous two stages

and would therefore be a major setback towards the progress of our project. By using the

agile approach, we were able to make a few adjustments towards the goals and design of

our product without much setbacks in the schedule.

Another advantage that was greatly felt in using the agile approach was the ability to

access the risk and value in small increments of the project (Kerzer, 2017). The agile

approach forces us to check the feasibility and risk throughout the duration of the entire

project to determine if this our current approach towards the problem is working or we should

pivot to try an alternative. This is seen when we were attempting to integrate the model,

frame extraction and filtering of frames into our app. We first tried to run the model directly

on device. However, after trying for a period of time, after assessing the risks and the

possible gains, we felt that this approach was not worth pursuing anymore and pivoted back

to the server approach. If such an incident occurred in a waterfall methodology of project

management, the design and analysis plans for the project would have to be scrapped and

revisited, wasting a lot of unnecessary time.

Lastly, due to our lack of knowledge in some of the technologies that were required to

accomplish this project, the agile model’s leniency on specific project requirements helped

us greatly. Often times during the project while implementing a certain part, we realised that

we needed certain libraries or APIs that were not initially expected in the proposal. With this

flexibility, we were able to go back and make small changes to the proposal without much

changes in schedule.

However, one disadvantage that comes with using the agile approach is the lack of

proper planning of resources according to the article by Planview LeanKit. This caused some

roadblocks in semester 2 as we did not anticipate the need for certain resources. For

example, in the proposal, we proposed the use of Amazon Web Services server for training

the model as well as hosting it. However, we soon discovered the cost incurred to use the

AWS server to train the model is too high to be feasible. We were then forced to use the lab

16



machine for this purpose. Had we calculated and estimated the cost of renting the server

beforehand, this problem would not have occurred.

17



4.3. Project resources, execution and planning

4.3.1. Project Schedule

18



4.3.2. Project Resources

Tasks Resources Type Resources Details

Training Data Sets 1.Equipment A workstation computer was provided for

training the model

Model: Dell Precision T5820 workstation

Operating System: Ubuntu  Linux

CPU: Intel® Xeon(R) W-2145 CPU @ 3.70GHz

RAM: 62.6GiB

2.Technologies i. Programming Languages

Python because it is a high level language for

machine learning and easier to use

ii. Platform

Pycharm Community Edition

iii. Libraries

Keras allows fast experimentation of neural

networks and modularity

TensorFlow will be used on building models by

using Keras with eager execution to achieve

immediate model interaction.

HTTP which is the Python library to implement

the GET and POST method to obtain

information from the server side

Google API Client Libraries offer a simple and

flexible access to Google APIs

v. Server Side Language

Python is used to establish a connection

between the server and users

19



3. Materials Subsets of Google Landmarks Data Sets

which contains 275,000 images, with 50 unique

landmarks

4. Time Taken Building the initial model: one week

Training the data sets: one week

Training with different settings: two weeks

Total: 4 weeks

Matching and

Evaluating

Data Sets

1. Technologies Libraries

PySceneDetect is used to extract frames

based on the number of scenes detected to

reduce the number of repeated frames.

OpenCV to optimize the code and filter out

blurry frames which will then be sent to be

trained

2. Time taken Filtering frames: one week

Optimization of code: one week concurrently

Data Set Labeling: 4 days

Total: < 3 weeks

Building the mobile

application

1. Technologies i. Programming Languages

Java will be used for building mobile application

because it is the native language for an mobile

application

ii. Platform

Android Studio

2. Time taken Basic functions: 5 days

OpenCV: one week

20



Improve user interface: one week

Total: ~ 3 weeks

Testing the

application

1. Technologies Uses Youtube API to add a function into the

mobile application to be able to upload the

videos directly from the mobile application to the

Youtube platform

Python Web Framework, Flask, will be used

for connection purpose between server and

users

2. Time taken Manually testing the results with selected

videos: one week

Testing the mobile application: one week

Total: 2 weeks

Project Review and

Reporting

1. Labor All team members should keep track of the

progress throughout the entire project. A record

of important decisions and steps taken should

be maintained over the period of the developing

process.

3. Time required Documentation and analysis: one week

Comparison with proposed results and

Conclusion: one week

Total: 2 weeks

21



4.4. Risk management

For risk management techniques, our team initially had a team meeting to brainstorm

potential risks that might arise from the project. Besides, SWOT analysis, which is short for

“Strengths”, “Weaknesses”, “Opportunities” and “Threats” will be applied on the project. By

determining strengths and weaknesses, we identified the risks in the context of opportunities

and threats.

We maintained a risk register which was constantly updated as we faced risks and resolved

them. The updated risk register following the completion of the project is shown as Appendix

A.

22



4.5 Limitations encountered during project management

4.5.1 Time Management

During the course of the project, we realised that we were required to be constantly

rescheduling our work due to roadblocks in the development stage and therefore lead to

slight delays and inefficiencies. Even though it must be noted that some scheduling changes

are inevitable, it would have been more efficient if we were able to continue with a schedule

as planned without any changes throughout the course of the project.

4.5.2 Versioning

Mid-project, it was realized that there was a need for proper version control in the files that

were used in collaboration between team members and thus a github implementation was

used from that point on. However, the use of such a system from the start of the project

would have been beneficial and would have resulted in a large time-saving when

collaboratively writing code.

4.5.3 Communication

We realized that one of the main lapses in project management was the communication

aspect. Due to this we faced complications towards the end of the project when trying to

integrate the system as some of the dependency libraries used in certain sections of code

were not supported for others. However we were able to overcome this with minimal effect

on the final project and without extensive delays through the improvement in communication

between team members.

23



5. Outcomes

5.1. Results achieved/product delivered

We have managed to obtain some achievements on our final product delivered throughout

the semester, which they will be discussed in the sections below.

5.1.1. Accuracy of Model

One of our major achievements is that our model managed to detect landmarks in the test

videos correctly at a high percentage. We have a validation accuracy of 90%. Our testing

stage was being carried out on approximately 20,000 landmarks, where our model is being

specifically trained to be detected the 50 landmarks in our selected list. For all the landmarks

listed under the selected list of 50 landmarks, there is a 90% of accuracy on validation

accuracy.

5.1.2. Filtering of Frames

5.1.2.1. Frame Extraction from Videos

In our proposed method, the video frames will be extracted based on fixed intervals. It was

being set to be extracting one frame for every 25ms, which there will be 40 frames per

second. By having a 48 seconds video, originally 1447 frames will be extracted by using the

traditional method. However if PySceneDetect is used, there is only 17 scenes being

detected. Number of frames to be extracted at each detected scene can be adjusted by

changing the parameters. A minimum frame number of 17 could be achieved if we set the

parameter to be extracting one frame per detected scene. This method has significantly

reduced the number of repeated frames being sent over to the model to be trained.

5.1.2.2. Blur Detection on Extracted Frames

The initial objective of implementing blur detection is to cut down the number of frames. The

model will not be able to detect any landmarks from blurred images, thus it will be more

efficient if we could remove them at the first case. A threshold is required to be set, where

any images that has a lower value than threshold will be removed. After a few testing and

adjusting the parameters, we managed to get the optimum threshold value, where the

images that passed the blur detection are mostly clear enough for the model to detect.

24



Overall, our final product managed to filter out most of the extra repeated scenes

automatically without adding any adjustment for every run. The number of frames that are

being sent over to the model are being reduced to more than 50% lesser compared to our

previous method. This is considered a major achievement because we can use the extra

slots to extract at two frames per scene to increase the accuracy to detect the landmarks.

5.1.3. Integration

We have different parts that is being implemented separately using different programming

language and will be combined as a single product at the end. The landmark detecting

model can only be run on Python by using Tensorflow and Keras libraries, where the mobile

application is preferred to be implemented on Android Studio because the native language

for an Android application is Java. The original plan is to run the model directly in the mobile

application, however failed due to too much dependency on the library used in the model.

We managed to integrate both of the results done in two different platforms together as a

final product by hosting a server and running the model on the server.

25



5.2. How are initial requirements met

Requirement Met (Yes/No) Notes

Satisfactory model accuracy Yes Acheived 90% validation accuracy

Detect landmarks in videos in a

reasonable amount of time

Yes

Clickable list items to directly

seek to that timestamp in the

video

Yes

Viewing of the video in the app

while processing

Yes Achieved using the Youtube API

User friendly mobile application Yes Final product is simple and easy to use

Able to upload videos from

device

Yes

Able to download videos from

URL

Yes

Scalable approach used Yes

Download and upload video files

in a reasonable amount of time

No Download and upload speed is

unsatisfactory and dependant on the

connection speed

Able to detect a wide range of

landmarks

No Restricted to 50 landmarks due to

issue with dataset

Able to directly upload video to

Youtube with descriptions

No Unable to integrate Youtube API in the

app

Compatible with many file types No Restricted to mp4 format

26



5.3. Justification of decisions made

5.3.1. Running the model on device vs on a server

Initially during the proposal phase, we proposed that we would be sending the video

file to a server to be processed. However, after assessing the performance and time taken to

process a frame in the video which turned out to require much less processing power and

time than we expected, we attempted to run the model on the device itself. The advantages

of going with this approach are:

(1) The model can be stored on device, allowing the application to run without the

access to Internet.

(2) Uploading the video to the server is no longer required, therefore significantly

reducing the runtime of the entire process and allowing the file size of the video to be

much larger.

(3) A server is no longer required to be kept online to use the application, reducing the

cost of operation of the app.

We tried using Chaquopy, which is a Python SDK for Android that allows a single Android

app to simultaneously run Python, Java and Kotlin code. The first issue we faced was

regarding the model. In order to run the model, many libraries are required, such as Keras,

Tensorflow, numpy and more. Chaquopy lacked support for some of these libraries. We

could find alternatives to these libraries, however, we found another issue, which is that the

size of the resulting application was close to 1GB even when the file that stores our model

was only around 60MB. A present day Android phone has and average of around 64GB of

internal storage, making a 1GB app impractical.

Due to this, we revisited the server approach. To ease integration as all of the code

for our model runs on Python, we decided to use a web framework that is built on Python

called Flask. The advantages of using a server are:

(1) If the server is a machine with enough computing power, the time taken to process

the video can be drastically decreased.

(2) A server with more computing power would allow us to tune certain parameters in our

model such as the number of frames taken per scene in PySceneDetect and the blur

threshold in the Blur Detection using OpenCV, improving the accuracy of our model.

(3) The processing of the video, if run on device, would cause a significant drain of

battery as it is a CPU intensive workload. Running the model on the server would

reduce the battery usage of the application.

Therefore, we decided to implement the server approach.

27



5.3.2 Learning rate and optimizer of model

It was previously proven through multiple research papers as well as our own tests that the

adam optimizer was the best at producing results in improving the accuracy of the model

and therefore it was used.

For the learning rate it is necessary to have a low rate in order to improve the accuracy of

the model, however if the rate is set to be too low it may result in exponential rises in the

time taken to train the model. Therefore considering the constraints, we found 0.0001 to be

the optimal learning rate to find a balance between accuracy and the time taken.

5.3.3 Number of Epochs and Batch Sizes

The two main requirements from varying these two variables is to obtain a model that is

accurate as well as one that does not take too long to train. Thus it is necessary to make

sure that the two values need to be high enough to make the model accurate but not too

high as to make it take too long to train. We needed to test various values and find the sweet

spot at which the increase in accuracy did not justify further increase in values due to the

time factor.

Following various tests it was found that a batch size of 500 and 50 epochs was the ideal.

28



5.4. Limitations of project outcomes

5.4.1. Lack of User Friendly Functions

Due to our server framework, which only allows for 1 response per request, we were unable

to implement a working progress bar in the application. This negatively impacts the user

experience as there is no indicator of the current progress of the processing as well as the

estimated time remaining. The user will only be presented with the resulting landmarks and

timestamps when all the processing has been completed.

5.4.2. Limited Number of Landmarks

Due to the issue we faced in regards to the Google Landmarks Dataset, which was that it did

not contain the names of the landmarks, only the IDs to identify them, we were forced to

manually match the IDs with their corresponding landmark names. This process was very

time consuming and therefore we limited the scope of the landmarks to the 50 landmarks

with the most images in the dataset. Therefore, although we were able to achieve a rather

high accuracy when tested on images containing one of the 50 trained landmarks, if an

image which contains a landmark that is outside the scope, one of two things might happen:

(1) The landmark will simply not be detected at all

(2) The landmarks will be falsely detected as one of the 50 trained landmarks that might

look similar. For example, a castle in the image is detected as one of the castles in the

50 trained landmarks.

5.4.3. Network Connection Speed

As the entire video file has to be sent to the server for processing, the upload and download

speed at both the server and the user’s device is a major factor towards how long the user

has to wait before he or she can get a result. Therefore, if the video file being uploaded by

the user is high quality with a high resolution and frame rate, the file size might be huge

which causes it to take a long time to upload, negatively impacting the user experience. To

mitigate this, the video downloaded from Youtube will be downloaded at the lowest resolution

possible and without the audio track. However, from our testing, a Youtube video with a

longer duration will still take a substantial amount of time to download.

5.4.4. Lack of Youtube Integration

This was one of the features that we failed to implement. Initially, in the proposal, we

proposed that the app have a functionality that allowed the user to directly upload the video

29



from the local storage, along with the detected landmarks and timestamps directly to

Youtube. However, we failed to implement this due to issues with integrating the Youtube

API in our application.

5.4.5. Compatibility

As of now, the only video file type that is accepted in our application is mp4 (MPEG-4). This

is due to the way the uploading and downloading is done in both the server and application

side. Furthermore, the current implementation of the detection algorithm is only tested to

work on mp4s.

30



5.5. Improvements and possible future works

Find a dataset with tagged landmarks and make a more inclusive model.

By using a larger model that consists of a larger array of landmarks, it is possible for us to

make the model more inclusive thus increasing the overall accuracy of landmarks detected

by reducing the false positive rate when the model is fed with other landmarks. The current

method used to train can be easily scaled up for this purpose provided that a larger data set

is found as well as the required computational resources are available.

Incorporate Deep Local Feature(DeLF) Extraction to reduce false positives

False positives are currently generated when images without landmarks in them are sent

into the model, even with a higher threshold for detection. Therefore, through the

incorporation of DeLF extraction and using it as a final crosscheck mechanism to the models

prediction, it is possible to reduce the number of false positives generated. However this

may have computational time implications and therefore may require more powerful servers

to run the prediction.

Increase compatibility in app platforms and video types

Currently the system is only implemented for the android platform, and thus reduces the

user-reach and by expanding it to other systems such as IOS and windows more

widespread user adoption could be expected. Moreover, through the integration to browser

extensions such as chrome extensions, it is possible to improve the user experience as well

by preventing the need for users to use a completely new app.

Furthermore, currently our system only accepts mp4 files and by increasing the amount of

file formats, it is possible to improve the user experience.

Use of a database to reduce runtime

By using a database to store the outputs of a given video file, it will be possible for us to use

the data from the database directly the next time the video is searched for,thus reducing the

time taken to run the prediction model. This may be implemented as a future improvement to

our system.

Further integration with youtube

Currently the system is not possible to directly upload the videos with descriptions into

youtube, however with further development features such as but not limited to this may be

incorporated into the application thus making it more user friendly.

31



6. Conclusion

In conclusion, our project manages to provide a proof of concept on the ability for current

technical advances in machine learning to detect and identify landmarks in videos. The work,

while being built upon a few research papers such as Nygaard in (Adil Nygaard, 2018) and

F. Chollet in (Chollet, 2017) that propose solutions to landmark detection in images, have

furthered this field as an initial dive into videos. The project provides a method which is

highly scalable to allow for extension into a larger dataset as well as for public adoption

given sufficient technical resources.

The project, while did have initial setbacks as well as certain goals unachieved,

successfully achieves all the major objectives that were set out at the start.

32



7. References

Adil Nygaard, U. N. (2018). Final Project. Google Landmark Recognition Challenge. Stanford
University.

Brown, C. (2018). Here Are the Top 10 Most Popular Types of Videos on YouTube. Retrieved
from mag.octoly.:
https://mag.octoly.com/here-are-the-top-10-most-popular-types-of-videos-on-youtube-4ea1e
1a192ac

Decker, C. (2016). Scene By Scene Script Generation For Live Action Hollywood Movies.
(Doctoral dissertation, Stetson University).

Gilley, C. (2015, 03 12). The Pros and Cons of Agile Product Development.

http://community.uservoice.com/blog/the-pros-and-cons-ofagile-product-development/

Henderson, P. (2018). Video Marketing in Travel - 10 Key Insights. Retrieved from
markgrowth:
https://blog.markgrowth.com/video-marketing-in-travel-10-key-insights-a64fdcffa465

Kerzner, H. (2017). Agile/Scrum Project Management. Project Management Case Studies

(5th Edition).

Travel video view statistics - Think with Google. (2018). Retrieved from thinkwithgoogle:
https://www.thinkwithgoogle.com/data/travel-video-view-statistics/

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. CVPR,
1251-1258.

Planview Leankit. (2019). What Are The Disadvantages of Agile?

https://leankit.com/learn/agile/what-are-the-disadvantages-of-agile/

Raghav Bansal, G. R. (2018). Blur image detection using Laplacian operator and Open-CV.
5th International Conference (pp. 399-403). ICEEE.

33

https://mag.octoly.com/here-are-the-top-10-most-popular-types-of-videos-on-youtube-4ea1e1a192ac
https://mag.octoly.com/here-are-the-top-10-most-popular-types-of-videos-on-youtube-4ea1e1a192ac
http://community.uservoice.com/blog/the-pros-and-cons-ofagile-product-development/
https://blog.markgrowth.com/video-marketing-in-travel-10-key-insights-a64fdcffa465
https://www.thinkwithgoogle.com/data/travel-video-view-statistics/
https://leankit.com/learn/agile/what-are-the-disadvantages-of-agile/


34


